The Crystal Structure of Potassium [3,6-Dimethyloct-4-yne-3,6-dioltrichloroplatinate(II)], $\mathrm{K}_{\{ } \mathrm{Cl}_{3} \mathrm{Pt}^{\mathrm{H}}\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{3}\right) \mathrm{C}(\mathbf{O H})-\mathrm{C} \equiv \mathrm{C}-\mathbf{C}(\mathbf{O H})\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\right\}$

By R.J.Dubey*
Department of Chemistry, University of Quebec, Montreal, Canada

(Received 1 November 1974; accepted 27 May 1975)

Abstract

The crystal structure of the title compound has been determined from X-ray intensity data collected on a four-circle diffractometer with a $\theta-2 \theta$ scan and graphite-monochromated Mo $K \alpha$ radiation $\left(2 \theta=62^{\circ}\right)$. The crystals are monoclinic, space group $P 2_{1} / c$ ($C_{2 h}^{5}$, No. 14), $Z=4$, with $a=10 \cdot 721(10), b=9 \cdot 592(7)$, $c=16 \cdot 440(8) \AA$ and $\beta=103 \cdot 19(6)^{\circ}$. Crystal densities are $\varrho_{m}=1.95$ and $\varrho_{c}=2.06 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by the heavy-atom technique and refined by least-squares procedures to a final value of $R=$ 0.084 and $R_{w}=0.095$, based on the 2291 observed refiexions with $I>3 \sigma(I)$. The acetylenic bond is perpendicular to the plane of platinum coordination. The $\mathrm{Pt}-\mathrm{Cl}$ distance trans to the triple bond is longer $[2 \cdot 322(7) \AA]$ than the cis $\mathrm{Pt}-\mathrm{Cl}$ distances of $2 \cdot 304(6), 2 \cdot 293(6) \AA$. Other important bond distances are $\mathrm{Pt}-\mathrm{C}(1)=2 \cdot 127(25), \mathrm{Pt}-\mathrm{C}(6)=2 \cdot 153(22)$, and $\mathrm{C} \equiv \mathrm{C}=1 \cdot 23(3) \AA$. Deformation from linearity occurs in the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles [157.4(24) $161 \cdot 6(25)^{\circ}$]. The $\mathrm{C}-\mathrm{Pt}-\mathrm{C}$ angle is $33 \cdot 41(88)^{\circ}$ and the molecules in the crystal are joined by electrostatic forces to the K^{+}ion.

Introduction

This investigation is a part of the study of metalalkyne complexes which have the general formula $\operatorname{Pt}\left[\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}(\mathrm{OH})-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}(\mathrm{OH}) \mathrm{R}_{1} \mathrm{R}_{2}\right]_{2}$. In a previous paper (Dubey, 1975) the crystal structure of $\operatorname{Pt}\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{C}(\mathrm{OH})\right.$ $\left.-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}(\mathrm{OH})\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2}$ has been studied (where R_{1} and R_{2} groups are the same). The present structure was undertaken to determine the geometry of the molecule where R_{1} is different from R_{2}.

Experimental

Yellow prismatic crystals elongated along the a axis were obtained by crystallization of the compound from acetone solution at 0°. The crystal density measured by flotation is in good agreement with the calculated value. The space group $P 2_{1} / c$ was deduced from the systematic absences for $h 0 l, l=2 n+1$, and $0 k 0, k=2 n+1$, together with the $2 / m$ Laue symmetry observed photographically. Precise lattice parameters were obtained from a least-squares refinement of the $2 \theta, \omega, \chi$ and φ angles of 15 well centred reflexions on a Syntex $P \overline{1}$ automatic diffractometer using graphitemonochromated (take-off angle of 12°) Mo $K \alpha$ radiation. The crystal selected for X-ray intensity measurement was approximately $0.5 \times 0.3 \times 0.3 \mathrm{~mm}$ (the long axis parallel to the φ axis). Intensity data were collected $\left(2 \theta \leq 62^{\circ}\right)$ at room temperature with the $\theta / 2 \theta$ scan mode and the reflexions were scanned at between 1° and 24° $\min ^{-1}$ depending upon the peak intensity. The intensities of two standard reflexions, recorded after every 25 measurements to monitor the crystal stability, re-

[^0]mained essentially constant throughout the data collection. Out of 5234 measured intensities, 2291 were observed on the basis of $I>3 \sigma(I)$.

A standard deviation was assigned to each reflexion according to the formula:

$$
\sigma(I)=\left[S+\left\{\left(B_{1}+B_{2}\right) / \alpha^{2}\right\}\right]^{1 / 2} \times \text { scan rate }
$$

where S is the total counts collected during the scan, B_{1} and B_{2} are the number of counts collected for each background, and α is the ratio of scan time to total background time. The raw intensities were corrected for Lorentz and polarization factors and absorption corrections were applied according to the procedure described by Ahmed (1970). The corrected intensities were placed on an approximate absolute scale obtained from a Wilson plot. A summary of crystallographic data is given in Table 1.

```
Table 1. Crystallographic data
```

```
\[
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Cl}_{3} \mathrm{KPt} \text {, F.W. 510-8 } \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=10.721 \text { (10) } \AA \\
& b=9.592 \text { (7) } \\
& c=16 \cdot 440 \text { ( } 8 \text { ) } \\
& \beta=103.19 \text { (6) }{ }^{\circ} \\
& V=1646 \cdot 12 \pm 2 \cdot 22 \AA^{3} \\
& \varrho \text { obs. }=1.95 \mathrm{~g} \mathrm{~cm}^{-3} \\
& \varrho \text { cal. }=2.06 \\
& Z=4 \\
& \mu(\text { Mo } K \alpha)=96.8 \mathrm{~cm}^{-1} \\
& \lambda(\text { Mo } K \alpha)=0.71069 \AA \\
& \left|F_{000}\right|=968
\end{aligned}
\]
```


Structure determination and refinement

The structure was solved with the heavy-atom method. All computations required in the structure determination were performed on a CDC 6000 computer using
the X-RAY 72 system of crystallographic programs (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972). The coordinates, isotropic temperature factors and scale factor were refined by full-matrix least-squares procedures. All least-squares calculations were carried out on F, with $C R Y L S Q$, the function minimized being $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, and the weights were derived from the counting statistics. In the calculation of the structure factors the atomic scattering factors for $\mathrm{Pt}, \mathrm{K}^{+}, \mathrm{Cl}, \mathrm{O}$ and C were taken from International Tables for X-ray Crystallography (1968). The effects of anomalous dispersion were included, and the values of Δf^{\prime} and $\Delta f^{\prime \prime}$ for Pt, K and Cl were taken from Cromer \& Liberman (1970). The structure converged to an R of $0 \cdot 14$, were $R=\left(\left|\left|F_{o}\right|-\left|F_{c}\right|\right) / \Sigma\left|F_{o}\right|\right.$. The introduction of anisotropic thermal parameters for all non-hydrogen atoms followed by four cycles of full-matrix least-squares refinement gave the final values of $R=0.084$ and $R_{w}=$ $0.095\left(R_{w}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w F_{o}^{2}\right]^{1 / 2}\right)$. The estimated
standard deviation in a reflexion of unit weight, $\left\{\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}\right] /(m-s)\right\}^{1 / 2}$, is $1 \cdot 01$. The number of observations, m, is equal to 2291 reflexions and $s=155$, the number of parameters refined. In the final cycle of least squares, all shifts were less than 1% of their e.s.d.'s. The final difference Fourier map showed no significant features. Hydrogen atoms were not located. The largest residual maxima and minima were $\pm 1 \cdot 3$ $\mathrm{e} \AA^{-3}$ in the vicinity of the Pt atom. The final positional and thermal parameters are given in Table 2. The estimated standard deviations of the atomic parameters are given in parentheses and refer to the least significant digit in the parameter.*

[^1]Table 2. Fractional coordinates and thermal parameters $\left(\times 10^{3}\right)$ with e.s.d.'s in parentheses
The anisotropic temperature parameters are of the form:

$T=\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+2 h l a^{*} c^{*} U_{13}+2 k l b^{*} c^{*} U_{23}\right)\right]$.									
	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\xrightarrow[\mathrm{Pt} \dagger]{ }{ }^{+}$	0.0606 (1)	$0 \cdot 2493$ (1)	$0 \cdot 3546$ (0)	467 (4)	430 (4)	353 (3)	-43 (5)	126 (2)	-10(5)
K^{+}	-0.0003 (6)	$0 \cdot 6585$ (5)	$0 \cdot 4218$ (4)	79 (4)	51 (3)	50 (3)	-6 (3)	18 (3)	5 (2)
$\mathrm{Cl}(1)$	$0 \cdot 1873$ (6)	$0 \cdot 3859$ (6)	0.4560 (4)	59 (3)	59 (3)	56 (3)	-10(3)	10 (3)	-17(3)
$\mathrm{Cl}(2)$	-0.0660 (6)	$0 \cdot 1129$ (7)	$0 \cdot 2542$ (3)	62 (3)	65 (3)	41 (3)	-13(3)	6 (2)	-6 (3)
$\mathrm{Cl}(3)$	-0.1227 (6)	$0 \cdot 3543$ (7)	$0 \cdot 3788$ (4)	52 (3)	64 (3)	65 (4)	3 (3)	21 (3)	-6 (3)
O(1)	$0.1793(17)$ $0.1168(20)$	$0.3252(18)$ $-0.1155(19)$	$0 \cdot 1817$ (10)	66 (11)	70 (11)	44 (8)	-4 (9)	13 (8)	8 (8)
$\mathrm{O}(2)$	$0.1168(20)$ $0.2268(22)$	-0.1155 (19)	$0 \cdot 3750$ (12)	97 (14)	67 (11)	68 (11)	-34(11)	33 (11)	-4 (9)
C(1)	$0.2268(22)$ 0.2840	$0 \cdot 1975$ (23)	$0 \cdot 3109$ (13)	51 (13)	50 (10)	37 (10)	-10(10)	3 (9)	-7(9)
C(2) C(3)	0.2840 (24) 0.3585 (25)	$0.2747(23)$ 0.3955 (31)	$0.2502(18)$ 0.2875	55 (13)	49 (15)	82 (17)	-3(10)	35 (13)	13 (11)
C(3)	0.3585 $0.4763(33)$	$0 \cdot 3955$ (31)	$0 \cdot 2875$ (17)	54 (15)	90 (19)	62 (16)	-27 (15)	3 (12)	11 (15)
C(4)	0.4763 (33) $0.3539(31)$	$0 \cdot 3574$ (46)	$0 \cdot 3590$ (26)	71 (22)	141 (34)	122 (30)	-6 (23)	25 (22)	30 (28)
C(5) C(6)	$0.3539(31)$ 0.2145 (19)	0.1643 (33)	0.2048 0.3592	98 (23)	88 (20)	143 (30)	17 (18)	105 (24)	5 (20)
C(6)	0.2145 $0.2353(23)$	$0.1032(23)$ -0.0277	$0 \cdot 3592$ (15)	33 (10)	48 (11)	67 (14)	-5 (9)	20 (10)	-10(10)
C(7)	$0.2353(23)$ $0.3490(40)$	-0.0277 (26)	0.4081 (15)	47 (13)	59 (14)	58 (14)	2 (11)	-5 (11)	8 (11)
C(8) $\mathrm{C}(9)$	$0.3490(40)$ $0.3662(48)$	$-0.0982(38)$ -0.2461	$0.3873(27)$ $0.4291(35)$	113 (31)	$86(24)$	139 (34)	41 (22)	6 (26)	25 (23)
C(9) $\mathrm{C}(10)$	$0 \cdot 3662(48)$ $0.2411(38)$	$-0.2461 ~(42)$ 0.0003	0.4291 (35)	134 (37)	103 (29)	181 (47)	58 (28)	29 (34)	28 (30)
C(10)	$0 \cdot 2411$ (38)	0.0003 (34)	$0 \cdot 5021$ (17)	152 (35)	94 (22)	38 (14)	12 (24)	-16 (17)	7 (14)

\dagger Thermal parameters of the platinum atom are multiplied by 10^{4}.

Fig. 1. Stereoscopic view of the molecule.

Description and discussion of the structure

Fig. 1 shows a stereoscopic view of the molecule drawn by the ORTEP program (Johnson, 1970). The interatomic distances and angles are given in Tables 3 and 4 respectively. The centre of the $\mathrm{C}-\mathrm{C}$ triple bond and three Cl atoms form a square-planar environment about the central Pt atom. The $\mathrm{Pt}-\mathrm{C}$ bond lengths are equal and the plane of the $\mathrm{C} \equiv \mathrm{C}$ bond is perpendicular to the plane of $\mathrm{Pt}, \mathrm{Cl}(1), \mathrm{Cl}(2)$, and $\mathrm{Cl}(3)$. The equation of the least-squares plane and the atomic deviations are listed in Table 5. C(1) is $-0.55 \AA$ below and C(6) $0.66 \AA$ above the plane. A coordination diagram of the Pt atom is shown in Fig. 2. The $\mathrm{C}(1) \equiv \mathrm{C}(6)$ line makes an angle of 5° with the plane of Pt coordination. The $\mathrm{Cl}-\mathrm{Pt}-\mathrm{Cl}$ angles have the usual values of 90 or 180°. The $\mathrm{Pt}-\mathrm{Cl}$ bond lengths cis to the $\mathrm{C}-\mathrm{C}$ triple bond are, 2.304 (6) and 2.293 (6) \AA; however, the trans $\mathrm{Pt}-\mathrm{Cl}$ distance of 2.322 (7) \AA is not significantly different from the other values to give a conclusive trans effect. In the structure of Zeise's salt, $\mathrm{K}\left[\mathrm{Cl}_{3} \mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Pt}-\mathrm{Cl}$ distance trans to the olefin ligand is $2 \cdot 327$ (5) \AA, while a mean $\mathrm{Pt}-\mathrm{Cl}$ distance of $2 \cdot 305$ (9) \AA was determined for the other two $\mathrm{Pt}-\mathrm{Cl}$ bonds. The $\mathrm{Pt}-\mathrm{Cl}$ distances observed in this structure are comparable to that found in Zeise's salt (Jarvis, Kilbourn \& Owston, 1971).

Fig. 2. Coordination of the platinum atom.

Fig. 3. Molecular packing seen along c. Potassium ion coordination is shown by dotted lines.

Table 3. Bond lengths (\AA) and their e.s.d.'s (in parentheses)

Symmetry code
(i) $\quad x, 1+y, \quad z$
(ii) $\quad-x, \frac{1}{2}+y, \frac{1}{2}-z$
(iii) $-x, 1-y, 1-z$

$\mathrm{Pt}-\mathrm{Cl}(1)$	$2 \cdot 304(6)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 48(3)$
$\mathrm{Pt}-\mathrm{Cl}(2)$	$2 \cdot 293(6)$	$\mathrm{C}(7)-\mathrm{O}(2)$	$1 \cdot 52(3)$
$\mathrm{Pt}-\mathrm{Cl}(3)$	$2 \cdot 322(7)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 50(5)$
$\mathrm{Pt}-\mathrm{C}(1)$	$2 \cdot 127(25)$	$\mathrm{C}(7)-\mathrm{C}(10)$	$1 \cdot 56(4)$
$\mathrm{Pt}-\mathrm{C}(6)$	$2 \cdot 153(22)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 57(6)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1 \cdot 23(3)$	$\mathrm{K} \cdots \mathrm{O}\left(2^{1}\right)$	$2 \cdot 70(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 48(4)$	$\mathrm{K} \cdots \mathrm{O}\left(1^{1 i}\right)$	$2 \cdot 77(2)$
$\mathrm{C}(2)-\mathrm{O}(1)$	$1 \cdot 48(3)$	$\mathrm{K} \cdots \mathrm{Cl}(1)$	$3 \cdot 27(1)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 46(4)$	$\mathrm{K} \cdots \mathrm{Cl}(3)$	$3 \cdot 21(1)$
$\mathrm{C}(2)-\mathrm{C}(5)$	$1 \cdot 58(5)$	$\left.\mathrm{K} \cdots \mathrm{Cl} 1^{11 i}\right)$	$3 \cdot 18(1)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 56(4)$	$\mathrm{K} \cdots \mathrm{Cl}\left(3^{i n i}\right)$	$3 \cdot 25(1)$
		$\mathrm{K} \cdots \mathrm{Cl}\left(2^{\text {ii }}\right)$	$3 \cdot 16(1)$

Table 4. Bond angles $\left(^{\circ}\right)$ with their e.s.d.'s in parentheses

$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	$179 \cdot 72(24)$
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(3)$	$90.69(22)$
$\mathrm{Cl}(3)-\mathrm{Pt}-\mathrm{Cl}(2)$	$89 \cdot 18(23)$
$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{C}(6)$	$33 \cdot 41(88)$
$\mathrm{Pt}-\mathrm{C}(1)-\mathrm{C}(2)$	$128 \cdot 1(16)$
$\mathrm{Pt}-\mathrm{C}(6)-\mathrm{C}(7)$	$126 \cdot 2(18)$
$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{Cl}(3)$	$165 \cdot 09(61)$
$\mathrm{C}(6)-\mathrm{Pt}-\mathrm{Cl}(3)$	$161 \cdot 48(68)$
$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{Cl}(1)$	$88.62(58)$
$\mathrm{C}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	$91 \cdot 57(58)$
$\mathrm{C}(6)-\mathrm{Pt}-\mathrm{Cl}(1)$	$91 \cdot 40(58)$
$\mathrm{C}(6)-\mathrm{Pt}-\mathrm{Cl}(2)$	$88 \cdot 65(58)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$157.4(24)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(1)$	$161 \cdot 6(25)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(1)$	$108 \cdot 5(20)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$112 \cdot 5(23)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(5)$	$107.2(21)$
$\mathrm{C}(5)-\mathrm{C}(2)-\mathrm{O}(1)$	$102 \cdot 7(21)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(1)$	$108 \cdot 0(18)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(5)$	$117 \cdot 2(24)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$113 \cdot 7(26)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(2)$	$105 \cdot 4(17)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$106 \cdot 8(25)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$	$111 \cdot 1(22)$
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(0)$	$107 \cdot 0(23)$
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$109 \cdot 0(22)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	$116 \cdot 9(25)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$109 \cdot 2(37)$
C	
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$139 \cdot 01$

Table 5. Least-squares plane and atomic deviations from the plane

The plane was calculated according to the method of Schomaker, Waser, Marsh \& Bergman (1959). The equation of the plane is expressed in direct space as $P x+Q y+R z=S$, where x, y, z are fractional coordinates relative to crystallographic axes.
Plane through atoms: $\mathrm{Pt}, \mathrm{Cl}(1), \mathrm{Cl}(2)$ and $\mathrm{Cl}(3)$.

$$
\text { Equation: } \quad-2 \cdot 263 x-6 \cdot 643 y+11 \cdot 833 z=2 \cdot 406
$$

Atomic deviations (\AA)

Pt	-0.0033	$\mathrm{Cl}(3)$	0.0000
$\mathrm{Cl}(1)$	0.0017	$\mathrm{C}(1)^{*}$	-0.5527
$\mathrm{Cl}(2)$	0.0017	$\mathrm{C}(6)^{*}$	0.6728

[^2]The prominent feature of the crystal structure (Fig. 3) is the geometry of the acetylene coordination. In this structure the angular distortions of $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles from linearity are 18° and 23° and the acetylenic bond length is 1.23 (3) \AA and thus it would appear that the acetylenic bond distance is twice the $\mathrm{C}-\mathrm{C}$ triple-bond radius of $0.603 \AA$ (Pauling, 1960, p. 224). The acetylenic C atoms $C(1)$ and $C(6)$ subtend an angle of $33(1)^{\circ}$ at the Ptatom, and this compares well with the values given by Manojlović-Muir, Muir \& Ibers (1969) and Davies \& Payne (1974). The Pt-C distances to C(1) and C(6) are $2 \cdot 127$ (25) and $2 \cdot 153$ (22) \AA, respectively, and are almost equal within 3σ. The geometry, bond lengths and angles of $\mathrm{C} \equiv \mathrm{C}$ and $\mathrm{Pt}-\mathrm{C}$ interactions in the present structure compare well with those of the trans $\left[\mathrm{PtCl}_{2}\left(\mathrm{Bu}^{\mathrm{C}} \equiv \mathrm{CBu}^{\mathrm{t}}\right)\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}\right)\right.$] complex (Davies, Hewertson, Mais, Owston \& Patel, 1970). The molecules in the crystal are stabilized by electrostatic forces from the K ion. Each of the K ions is coordinated to five Cl and to two O atoms. Seven nearest neighbours for the K ion have also been reported by Pauling (1960, p. 546) and for $\mathrm{K}_{3}\left(\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\left(\mathrm{HC}_{6} \mathrm{O}_{6} \mathrm{H}_{3}\right) \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Carrell, 1973) and $\mathrm{K}_{3} \mathrm{HP}_{2} \mathrm{O}_{7} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Dumas, Galigné \& Falgueirettes, 1973). The K^{+}environment is given in Table 3 with $\mathrm{K}^{+} \ldots \mathrm{O}$ distances ranging from $2 \cdot 70$ to $2 \cdot 77 \AA$ and $\mathrm{K}^{+} \ldots \mathrm{Cl}, 3 \cdot 16$ to $3 \cdot 27 \AA$. A mechanism of bonding for the complexes of acetylenes with $\mathrm{Pt}^{\mathrm{II}}$ was proposed by Chatt, Guy \& Duncanson (1961) and by Chatt, Guy, Duncanson \& Thompson (1963), according to whom the metal-acetylene bond consists of a σ - and π-interaction type. Donation of electrons from π bonding molecular orbitals of the acetylene to empty metal p or d orbitals occurs, forming a σ bond. This is accompanied by 'back-bonding' from filled metal $d_{\pi}-p_{\pi}$ hybrid orbitals to π^{*} antibonding orbitals on the acetylene ligand (Cotton \& Wilkinson, 1972). The present structure fits this theory.

This work was supported by the National Research Council of Canada in the regional development program. The author wishes to thank Drs F. D. Rochon
and Y. Pépin for the interest shown in this work, Dr P. Richard for useful discussion and Mr Jean-François Guédon of the University computing centre for adapting the ORTEP program to the X-RAY 72 system.

References

Ahmed, F. R. (1970). Crystallographic Computing, pp. 255294. Copenhagen: Munksgaard.

Carrell, H. L. (1973). Acta Cryst. B29, 2082-2088.
Chatt, J., Guy, R. G. \& Duncanson, L. A. (1961). J. Chem. Soc. pp. 827-834.
Chatt, J., Guy, R. G., Duncanson, L. A. \& Thompson, D. T. (1963). J. Chem. Soc. pp. 5170-5183.

Cotton, F. A. \& Wilkinson, G. (1972). Advanced Inorganic Chemistry, 3rd ed., p. 730. New York: Interscience.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Davies, B. W. \& Payne, N. C. (1974). Inorg. Chem. 13, 1848-1853.
Davies, G. R., Hewerston, W., Mais, R. H. B., Owston, P. G. \& Patel, C. G. (1970). J. Chem. Soc. (A), pp. 18731877.

Dubey, R. J. (1975). Acta Cryst. B31, 1860-1864.
Dumas, Y., GalignÉ, J. L. \& Falgueirettes, J. (1973). Acta Cryst. B29, 1623-1630.
International Tables for X-ray Crystallography (1968). Vol. III, 2nd ed., pp. 202-216. Birmingham: Kynoch Press.
Jarvis, J. A. J., Kilbourn, B. T. \& Owston, P. G. (1971). Acta Cryst. B27, 366-372.
Johnson, C. K. (1970). ORTEP. Oak Ridge National Laboratory Report ORNL-3794 (2nd rev.).
Manojlović-Muir, R., Muir, K. W. \& Ibers, J. A. (1969). Discuss. Faraday Soc. 47, 84-92.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
Schomaker, V., Waser, J., Marsh, R. E. \& Bergman, G. (1959). Acta Cryst. 12, 600-604.

Stewart, J. M., Kruger, G., Аmmon, H., Dickinson, C. H. \& Hall, S. R. (1972). X-RAY 72 Program System. Technical Report TR-192, Computer Center, Univ. of Maryland, College Park, Maryland, U.S.A.

[^0]: * Present address: Department of Chemistry-Biology, University of Quebec (Trois-Rivières), C.P. 500, Trois Rivières G9A 5H7, P. Quebec, Canada.

[^1]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31173 ($29 \mathrm{pp} ., 1$ microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

[^2]: * Denotes atoms not included in the least-squares fit.

